PHYSICAL REVIEW E

VOLUME 47, NUMBER 1

JANUARY 1993

Scaling behavior of a directed sandpile automata with random defects
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In a recent paper [B. Tadié, U. Nowak, K. D. Usadel, R. Ramaswamy, and S. Padlewski, Phys.
Rev. A 45, 8536 (1992)], the directed two-dimensional sandpile is modified to include a concentration

p of randomly placed holes.

For p>0, they observe a characteristic cutoff size for the duration

(and mass) of avalanches. This breaks the formal power-law behavior that is a signature of self-
organized criticality. The scaling of these characteristic sizes with the concentration of defects is
observed empirically to follow a power law, and the exponents are numerically determined. In this
Brief Report, it is shown that a previously described mean-field approximation can account for the

observed exponents.

PACS number(s): 05.40.+j,02.50.4s,64.60.Fr,64.60.Ht

The directed two-dimensional (2D) sandpile of Dhar
and Ramaswamy [1] is modified by Tadi¢ et al. [2], by
introducing a concentration p of randomly placed de-
fects (sites called “holes” which are not permitted to
topple). The authors numerically estimate exponents p;
(respectively, un,) which describe the scaling of charac-
teristic duration = (respectively, mass m) of avalanches
as a function of p, but do not provide any theoretical ar-
guments to explain the observed values (uy = 1.01+0.02,
Hm = 1.5230.01). The purpose of this Brief Report is to
show that these values are consistent with a simple model
introduced by Alstrgm [3] which treats the avalanches as
a stochastic branching process.

In the directed 2D sandpile automata, each site on a
triangular lattice has a resting value of 0 or 1. A site
is chosen randomly and one is added to its value; if the
resulting value is larger than one, then the site is said
to “topple.” In that case, its value is reduced by two,
and both of its downstream neighbors are incremented
by one. If any of the incremented sites now have a value
larger than one, then they topple, and so on down the
lattice. The duration of the avalanche is the number of
time steps (equivalently, the downstream distance) until
no more sites topple, and the mass is the total number
of toppled sites.

Each toppled site causes either 0, 1, or 2 of its down-
stream sites to topple, and in the mean-field approxima-
tion, fixed probabilities are assigned to each case. Fur-
ther, all the downstream sites are treated independently
(neglecting geometical properties of the two-dimensional
lattice), and it is assumed that each of these sites can
cause 0, 1, or 2 of its downstream sites to topple, with
the same probabilities. The state of the system at time
T is thus fully specified by the number ny of toppling
sites. This is essentially a Galton-Watson branching pro-
cess, and is discussed in the introductory monograph by
Harris [4].

Following the notation in [3], let C,, correspond to the
probability that a toppled site propogates n toppled sites
at the next time step. Then, Cp = (1—P)?, C, = 2P(1—
P), and Cy = P2, where P is the probability that a site
will topple if a grain of sand is added to it. Equivalently,
P is the probability that the value at a site is one. Note
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that a site’s value is zero or one, depending on its initial
value, and on whether an even or odd number of sand
grains have been added to it. Since grains arrive from
upstream and are unaffected by the site’s value, there
is no preference for zero or one; at “equilibrium,” after
many avalanches, P should approach %

For P < %, there is a characteristic lifetime z for the
branching process that is straightforward to derive. If
there are nr toppling sites at time step T, then the ex-
pected number at the next step will be (npy1) = (0C, +
1Cy + 2Co)nr = 2Pnyp. Thus, (nr) ~ (QP)T = e'T/I,
with characteristic lifetime £ = —1/In(2P).

Alstrgm [3] considers the critical value P = %, and
compares this branching model to self-organized critical-
ity. But when there is a concentration p > 0 of hole de-
fects, criticality is lost, and the analysis simplifies. In this
case, Pt = (1 —p) P since a site has a chance of toppling
only if it is not a hole. At equilibrium, the characteristic
lifetime is therefore given by z = —1/In(1 —p). For small
p, this approaches a power law z ~ p~!. This differs
from the numerically observed scaling by a constant fac-
tor, but the exponent predicted by the branching model
(1z = 1) agrees with the numerical simulations.

In Fig. 1, a plot of Inz versus Inp shows both the
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FIG. 1. Scaling of characteristic duration z as a function
of the concentration p of holes. Solid circles (o) are from
the numerical experiments in [2]. The solid line (—) is the
prediction £ = —k/In(1 — p) which is the mean-field value
multiplied by a constant factor k = 1.54 chosen to fit the
data. The dotted line (- - ) is the power law z = —k/p.
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experimental values reported in [2] (from Fig. 2 of that
paper), and the prediction of the mean-field approxima-
tion, after multiplication by a constant factor of ~ 1.
The theory describes not only the scaling exponent p.,
but also the deviation from power-law behavior observed
at larger p.

It should be emphasized that the mean field is a heuris-
tic theory, and does not predict the coefficient of the
scaling or the critical density p* ~ 0.295 above which the
largest possible avalanche becomes finite [2]. Also, direct

application of this model to obtain u,, gives a value of
2 [cf. Eq. (5) of [3]]. However, in the “pure”’ (p = 0)
sandpile [1], the scaling of mass m with lifetime z was
shown to follow an exact power law: m ~ z3/2. Since
x ~ p~H#= and m ~ p~Hm, one expects m ~ xhm/P= and
S0 fm = %, in fair agreement with the reported value of
1.52 £ 0.01.

This work was performed under the auspices of the
Department of Energy.
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